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ABSTRACT 
A method for generating an unstructured triangular mesh in two dimensions, suitable for com- 
puting high Reynolds number flows over arbitrary configurations is presented. The method is 
based on a Delaunay triangulation, which is performed in a locally stretched space, in order to 
obtain very high aspect ratio triangles in the boundary layer and wake regions. It is shown how 
the method can be coupled with an unstructured Navier-Stokes solver to produce a solution 
adaptive mesh generation procedure for viscous flows. 
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1. INTRODUCTION , 

In recent years, the use of unstructured triangular and tetrahedral meshes in two and three 
dimensions has become more widespread for computational fluid dynamics problems. The 
advantages of unstructured meshes lie in their ability to deal with arbitrarily complex 
geometries, while providing a natural setting for the use of adaptive mesh enrichment tech- 
niques. On the other hand, the accuracy of unstructured mesh discretizations, and the efficiency 
of unstructured mesh solvers have generally fallen short of their structured mesh counterparts. 
The appearance of more efficient and accurate Euler solvers for unstructured meshes [1,2,3], 
combined with the benefits of adaptive meshing, and a general drive to problems of higher 
geometric complexity have combined to make unstructured meshes the preferred choice for 
many inviscid flow problems [4,51. However, few attempts at solving high Reynolds number 
viscous flows about complex configurations with unstructured meshes are known. The efficient 
solution of such flows requires the generation of highly stretched elements in the thin boundary 
layer regions, where the resolution required in the direction normal to the layer can be several 
orders of magnitude greater than that in the streamwise direction. Present efforts at computing 
such flows have concentrated on the use of composite structured-unstructured meshes [6,7], 
where a thin structured triangular or quadrilateral mesh is placed in the boundary layer regions, 
and an unstructured mesh is used to fill the remainder of the domain. In this work, it is pro- 
posed to employ an unstructured mesh of mangles throughout the entire domain. This approach 
requires extreme stretching of the unstructured mesh in the boundary layer regions. However, 
it has the advantage of providing a completely automatic grid generation tool for arbitrary 
configurations, obviating the need for any human interaction, such as that required to define the 
structured-unstructured interface in the former approach. It also offers the possibility of obtain- 
ing a fully adaptive smoothly varying mesh throughout the viscous regions as well as in 
regions where the distance between neighboring boundaries may be smaller than the boundary 
layer thickness. 

Of the various algorithms for generating triangular meshes in two dimensions, the 
advancing front method [8], and the Delaunay triangulation method [9,10] have been success- 
fully applied to generate solution-adaptive evolving meshes. Sophisticated implementations of 
the advancing Front method incorporate directional stretching and refinement by successive 
remeshing according to stretching factors and directions obtained from a flow solution on a 
previous mesh. While this technique has proven valuable for inviscid flow calculations, the 
stretchings obtained are still several orders of magnitude smaller than that required for resolv- 
ing viscous boundary layer flows. 

The first application of Delaunay triangulation to aerodynamic problems was performed 
by Weatherill [ 111. The extension of this procedure to three dimensions has been pursued by 
Baker [ 121. Delaunay triangulation is particularly well suited for adaptive meshing techniques, 
since it may be formulated as a sequential and local process. New points may be added and tri- 
angulated locally without the need for remeshing the domain in whole or in part. For a given 
set of data points, a Delaunay triangulation will produce the most equiangular triangles possi- 
ble, and thus is not well suited for the generation of directionally refined meshes. In this paper, 
it will be shown how a Delaunay triangulation can be modified to accommodate directional 
stretching of any desired magnitude. 

2. THE DELAUNAY TRIANGULATION 
Given a set of points in two dimensions, there exists many ways of joining them together 
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to form a set of non-overlapping mangles. A Delaunay triangulation represents a unique con- 
struction of this type, which obeys certain specific properties. The geometric dual of the 
Delaunay triangulation is known as the Dirichlet tessalation. It is constructed by associating 
with each data point the area of the plane which is closer to that point, in terms of Euclidien 
distances, than to any other point in the plane. These regions have polygonal shapes and the 
tessalation of a closed domain results in a set of non-overlapping convex polygons covering the 
entire domain. If all point pairs whose Dirichlet regions have a face in common are joined by 
straight line segments, the Delaunay triangulation of these points is obtained. Figure 1 depicts 
the Dirichlet regions and associated Delaunay triangulation for a small set of points. 

A Delaunay triangulation obeys the circumcircle property, which states that no vertex 
from any triangle may lie within the circumcircle of any other triangle. This can also be shown 
[13] to be equivalent to the equiangular property, which states that a Delaunay triangulation is 
that which maximizes the minimum of the six angles in any pair of mangles of the mesh 
which make up a convex quadrilateral. Each of these properties may be used as the basis for a 
method of constructing a Delaunay triangulation. 

2.1. Bowyer’s Algorithm 
Bowyer’s algorithm [141, makes use of the cimcumcircle property to generate a Delaunay 

mangulation in a sequential manner. The mesh points are introduced one at a time into an 
existing triangulation. The triangles whose circumcircles are intersected by the new mesh point 
are flagged. These may be quickly determined by first locating the mangle which encloses the 
new point. The circumcircle of this triangle must be intersected by the new point, and so it is 
flagged. The neighbors of this triangle are then searched, and then their neighbors, thus 
proceeding outwards in a tree-search pattern, each leg of which terminates when a non- 
intersected triangle has been located. The union of the flagged triangles forms a convex polyg- 
onal region, and a new structure is defined in this region by joining the new point to all the 
vertices of the polygon. Proofs that the polygon is convex, and that the resulting triangulation 
is indeed a Delaunay structure can be found in the literature [12]. If an efficient search strategy 
is employed, Bowyer’s algorithm exhibits linear computational complexity with the number of 
mesh points. 

2.2. Diagonal Swapping Algorithm 
This algorithm, originally proposed in [15], and reviewed in [13], makes use of the 

equiangular property. Assuming we have an arbitrary triangulation of a given set of points, we 
may proceed to transform it into a Delaunay triangulation by repeatedly swapping the positions 
of the edges in the mesh in accordance with the equiangular property. Hence, each pair of tri- 
angles which constitute a convex quadrilateral are examined. The two possible configurations 
for the diagonal interior to the quadrilateral are examined, as shown in Figure 2, and the one 
which maximizes the minimum of the six interior angles of the quadrilateral is chosen. Each 
time an edge swap is performed, the triangulation becomes more equiangular. Multiple edge 
swapping passes through the entire mesh are then effected, until the most equiangular 
(Delaunay) triangulation is obtained. Although this algorithm is guaranteed to converge, it has 
a much higher complexity than Bowyer’s algorithm, and is only useful for constructing an 
equiangular triangulation either when the initial mesh is coarse, or when it represents a small 
deviation from a Delaunay triangulation. 



3. STRETCHING FACTORS 
Equiangular triangulations, which have been termed "best fit or optimal triangulations" 

may be desirable if one wishes to tessalate or subdivide a domain in a uniform manner. How- 
ever, by its very nature, such triangulations are ill-suited for the generation of meshes with 
directional stretchings. In fact, even if the mesh points are distributed sparsely in one direc- 
tion, and compactly in the perpendicular direction, the Delaunay construction will generally 
produce low aspect-ratio triangles of widely varying size. Thus, the standard Delaunay con- 
struction must be modified to accommodate directional mesh stretching. 

We proceed by defining a stretching vector, i.e. a direction and magnitude, at each point 
of the mesh. It is important to note that this stretching is a local property, but that it must vary 
smoothly throughout the domain. Because a Delaunay triangulation is a local construction, we 
may thus map a local region of the mesh onto the stretched space defined by the stretching 
vector in that region, perform the triangulation in this space, and then project the triangulation 
back into physical space. A stretching vector at a point is given by its magnitude s and its 
direction 0, where 

x x < e < -  
2 

s > 1 and -- 
2 

When s l ,  no stretching occurs. If a stretching smaller than unity is encountered, it is replaced 
by the inverse stretching in the perpendicular direction. Equation (1) also reflects the fact that 
two stretchings of equal magnitudes in opposite directions are equivalent. 

The locally mapped space is obtained by considering a two-dimensional control surface in 
three dimensional space, as described in 1161. If d represents a Euclidien distance in physical 
space: 

dL = & ? + A 3  
then, in the mapped space, it is replaced by 

where 
62 = & + A Y +  Az2 (3) 

Az = [ Ax sin0 - Ay cos0 1 (s-1) (4) 
For a stretching of unity, AZ vanishes and the mapped space and the physical space become 
identical. If for example, a stretching of s is applied in the x-coordinate direction, as would be 
required to resolve a boundary layer aligned with this direction, then, taking 8 = 0, an incre- 
ment in the x direction maps to 

6, = Ax 
and an increment in the y direction maps to 

I - 
6, = Ay [ l  + ( ~ - 1 ) ~ ] ~  

which, for large values of s, approaches 

6, = s Ay (7) 
Thus, if we have a distribution of mesh points in the physical space which is closely packed in 
the y-direction, and sparse in the x-direction, then, in the mapped space, this mesh point distri- 
bution becomes more uniform in both directions. By triangulating this mapped mesh point dis- 
tribution, we obtain an equiangular triangulation in the stretched space, and a directionally 
stretched mesh in the physical space. If the diagonal swapping algorithm is to be used for con- 
suucting the triangulation, then the six interior angles of each convex quadrilateral in the 
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locally stretched space must be considered. On the other hand, when Bowyer’s algorithm is 
employed, the procedure can be thought of as the construction of a modified Delaunay triangu- 
lation, where the circumcircles of the triangles in the stretched space correspond to ellipses in 
the physical space. 

The necessary condition for this stretched triangulation to succeed requires that the local 
variation of the stretching vectors in space be small compared with the average local cell size. 
Thus, in regions were the stretching values vary rapidly, a fine mesh resolution is needed so 
that, on the scale of the local mesh cells, the assumption of a constant stretching can be made, 
and the stretched space appears locally planar or Euclidien. 

4. INITIAL MESH GENERATION 
In the above discussion, it has been assumed that an initial triangulation with adequate 

resolution in highly stretched regions exists, and that all further modifications or refinements of 
the mesh are of a purely local nature. However, the construction of an initial mesh is a global 
procedure, and thus local stretching values cannot be directly accommodated at this initial 
stage. To circumvent this difficulty, a regular Delaunay triangulation is first generated in phy- 
sical space using Bowyer’s algorithm, while disregarding the stretching values. Although this 
step involves non-local procedures, it results in a discretization of the physical space upon 
which purely local procedures may now be performed. The edge swapping algorithm is then 
employed to transform the mesh from an equiangular triangulation in physical space, to an 
equiangular triangulation in the stretched space. Because the initial mesh need only be coarse, 
and since no edge swapping is required in regions where the stretching values are small, the 
edge swapping algorithm can be expected to converge ragidly. Once this initial coarse stretched 
mesh is obtained, it can be adaptively refined by adding points and reaiangulating locally fol- 
lowing Bowyer’s algorithm in the locally stretched space. 

5. GENERAL PROCEDURE FOR MULTI-ELEMENT AIRFOILS 
To generate a stretched Delaunay mesh around a multi-element airfoil configuration, a set 

of mesh points and their associated stretching vectors must first be defined. This is achieved by 
generating a standard quadrilateral C-mesh around each airfoil element, thus resulting in a set 
of overlapping structured meshes. Stretching vectors are then defined at each mesh point, by 
taking their magnitude s as 

and their direction equal to the direction of the 5 or 6 structured mesh lines, depending on 
whether the first or second values are chosen for s in equation (8). Here, and Aq represent 
the local spacing of the structured C-mesh in the two mesh coordinate directions. 

The mesh point distribution resulting from the set of overlapping C-meshes can now be 
used as the basis for a Delaunay triangulation. An initial triangulation is set up by joining the 
trailing edge point of the main airfoil to all the outer boundary points. The points on the sur- 
face of the airfoils are then introduced and triangulated into the existing structure using 
Bowyer’s algorithm. Because neighboring surface points on a given airfoil are much closer to 
each other than they are to any points on other airfoils, or to the far-field boundary points, the 
resulting triangulation is body conforming. That is, the triangulation contains elements inside 
the regions defined by the airfoils, as well as in the exterior of these regions, and the interior 
triangles all have a face aligned with the airfoil surfaces. These interior triangles are then 
identified and protected, thus preventing .their structure tiom being broken when new mesh 
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points are introduced, and hence preserving the integrity of the boundaries. The remaining 
mesh points are then introduced and mangulated into the existing structure. It can be seen 
that, in the initial stages of this construction, a small number of triangles will cover the entire 
domain, and thus Bowyer’s algorithm can no longer be considered to be a purely local process. 
Hence local stretching values cannot be taken into account at this stage, and a Delaunay tri- 
angulation in the physical space is generated. However, once this triangulation has been con- 
structed, the space is sufficiently discretized so that all further operations may be effected in a 
purely local manner. The next step consists of applying a Laplacian-type averaging procedure 
to the local stretching vectors over the existing Delaunay triangulation, thus ensuring a 
smoothly varying distribution of the stretching throughout the domain. The edge swapping rou- 
tine is then applied in conjunction with the smoothed local stretching values to obtain a 
Delaunay triangulation in the stretched space. This mesh may finally be smoothed by slightly 
repositioning the points according to a Laplacian filtering operation described previously [l]. 

Once this initial stretched triangulation has been generated, it may be combined with a 
flow solver to produce an adaptive mesh refinement procedure, where the mesh point distribu- 
tion is defined by the evolving solution of the flow field. For steady state calculations, this 
corresponds to converging the solution on the initial coarse mesh, adding points in regions 
where the computed flow gradients are large, and retriangulating these points into the existing 
structure using Bowyer’s algorithm in the locally stretched space. When new points are intro- 
duced, they are assigned stretching values taken as the average of the stretchings of the neigh- 
boring points, thus maintaining a smooth distribution of stretching throughout the domain. 
When points are added on the surface of an airfoil, they must be repositioned onto the original 
surface definition of the airfoil, which, for curved surfaces, will not in coincide with the posi- 
tion determined by linear interpolation between the two adjacent surface points. The new sur- 
face points are then triangulated by joining them to the two neighboring surface points, and to 4 

the vertices of all triangles exterior to the airfoil whose circumcircles are intersected. The flow 
solution is then interpolated onto the new finer mesh, and the entire solution-adaptation process 
is repeated. 

6. SINGLE AIRFOIL MESH 
As a first example, an adaptive Navier-Stokes triangular mesh has been generated about a 

single NACA 0012 airfoil. An initial mesh, containing 1360 points, is first generated by con- 
structing a structured C-mesh around the airfoil with a hyperbolic grid generator, triangulating 
this point distribution, and then swapping the diagonals. The full Navier-Stokes equations are 
then discretized and solved for on this mesh. The mesh is then adaptively refined according to 
the local gradient of density. The difference in density along each edge of the mesh is exam- 
ined. When this value is larger than the average difference of the density across all the mesh 
edges, a new point is added midway along that edge. These new points are then triangulated 
into the existing mesh using Bowyer’s algorithm in the locally stretched space. The refined 
mesh is then smoothed out by slightly repositioning the mesh points according to a Laplacian 
filtering operation [l], to ensure a smooth distribution of elements. The refined mesh, which 
contains a total of 2316 points, is depicted in Figure 3, where the refinement occurring in the 
boundary layer regions and at the leading and trailing edges is apparent. The Figure illustrates 
the topology of the mesh in the vicinity of the leading and trailing edges, where a smooth tran- 
sition from an essentially regular, highly stretched triangulation near the body, to a random 
unstructured triangulation further out in the flow-field is observed. 
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7. TWO-ELEMENT AIRFOIL MESH 
The second configuration consists of a main airfoil with a leading edge slat. The initial 

mesh point distribution is obtained by constructing a structured C-mesh around each airfoil. 
The C-mesh about the main airfoil extends out to the far-field boundary, while the C-mesh 
about the slat is truncated less than one chord out from the surface of the slat, and also beyond 
the region where the wake lines from the slat impinge upon the main airfoil. This p i n t  distri- 
bution is then triangulated, the stretching values are smoothed, the edges swapped, and finally 
the point distribution is smoothed. The resulting mesh, which contains 5856 points is depicted 
in Figure 4. The stretching of the mesh in the boundary layer and wake regions of both air- 
foils is apparent, and a smooth transition of the elements is observed in the gap region, 
between the main airfoil and the leading edge slat. The steady state solution of the Navier- 
Stokes equations was obtained on this mesh, for a Mach number of 0.5, an incidence of 3", and 
a Reynolds number of 5000. A plot of the Mach contours in the flow field is given in Figure 5 ,  
where the boundary layer regions are evident, and a recirculation region is observed near the 
trailing edge on the upper surface of the main airfoil. A region of low velocity fluid is also 
seen to occur in the gap region between the main airfoil and the slat. A plot of the velocity 
vectors in this region, as given in Figure 6, clearly shows the boundary layer profiles on both 
airfoils, as well as the region of recirculating flow on the lower surface of the slat. This solu- 
tion was then used to adaptively refine the mesh according to the local gradient of the Mach 
number. The refined mesh, depicted in Figure 7, contains 11377 points. Refinement is seen to 
occur in the boundary layer regions, as well as in a portion of the gap region. However, as 
expected, the regions of recirculating flow are left unrefined. This mesh contains triangles of 
aspect ratio of the order of 1OOO:l in the wake regions, and up to 1OO:l midway along the sur- 
face of the main airfoil, and on the upper surface of the slat. 

8. CONCLUSION 
A method for adaptively generating unstructured triangular meshes with highly stretched 

elements, suitable for Navier-Stokes computations has been demonstrated. The method is 
efficient, in that once an initial coarse stretched triangulation has been set up, all further 
refinements are of a local nature and have a near linear computational complexity. For the 
two-element airfoil mesh of the previous section, the initial coarse mesh required approxi- 
mately 210 CPU secs to generate on a Convex C-1 computer. Roughly 1/3 of this time was 
required to construct the initial Delaunay triangulation in physical space, and the remainder 
was required by the edge swapping algorithm, which converged in 13 passes through the mesh. 
The adaptive refinement of this grid, which effectively doubled the number of mesh points, 
required roughly 80 secs of CPU time. 

In the examples presented in this work, the stretching factors for the mesh were deter- 
mined at the outset, and held fixed throughout the adaptive refinement procedure. In future 
work, it may be possible to adaptively modify these stretchings according to the evolving flow 
solution. 

The extension of this technique to three dimensions is not entirely straight forward. 
Although Bowyer's algorithm extends readily to higher dimensions, the equiangular property 
applies only in two dimensions, and thus no straightforward counterpart to the edge swapping 
algorithm exists in three dimensions. However, all the other concepts apply in three dimen- 
sions, thus if an initial coarse stretched mesh can be generated in three dimensions, then it may 
easily be adaptively refined. 



7 

ACKNOWLEDGEMENTS 

greatly appreciated for his sharing of knowledge and ideas in differential geometry. 
The help of G. Erlebacher of the Computational Methods Branch at NASA Langley is 

REFERENCES 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

MAVRIPLIS, D. J., and JAMESON, A., "Multigrid Solution of the 2-D Euler Equations 
on Unstructured Triangular Meshes", AIAA paper 87-0353, January, 1987. 
GILES, M., "Accuracy of Node-Based Solutions on Irregular Meshes", Proc. of the l l t h  
Int. Con$ on Num. Meth. in Fluid Dynamics, Eds D. Dwoyer, Y. Hussaini, R. Voight, 
Springer Verlag, June, 1988 
LOHNER, R., MORGAN, K., PERAIRE, J., VAHDATI, M., "Finite Element Flux- 
Corrected Transport for the Euler and Navier-Stokes Equations", Int. J. Num. Meth. 
Fluids Vol. 7, 1987, pp. 1093-1109 
JAMESON, A., BAKER, T. J., and WEATHERILL, N. P., "Calculation of Inviscid Tran- 
sonic Flow over a Complete Aircraft", AIAA paper 86-0103, January 1986. 
STOUFFLET, B., PERIAUX, J., FEZOUI, F., and DERVIEUX, A., "Numerical Simula- 
tion of 3-D Hypersonic Euler Flows Around Space Vehicles Using Adapted Finite Ele- 
ments", AIAA paper 87-0560 January 1987. 
WEATHERILL, N. P., JOHNSTON, L. J., PEACE, A. J., and SHAW, J. A., "Develop- 
ment of a Method for the Solution of the Reynolds-Averaged Navier-Stokes Equations on 
Triangular Grids", Aircraft Research Association Ltd. Report 70, Bedford, UK, 
December, 1986. 
NAKAHASHI, N., "FDM-FEM Zonal Approach for Viscous Flow Computations Over 
Multiple Bodies", AIAA paper 87-0604, January, 1987. 
PERAIRE, J., VAHDATI, M., MORGAN, K., and ZIENKIEWICZ, 0. C., "Adaptive 
Remeshing for Compressible Flow Computations", J. Comp. Phys., Vol 72, October, 

MAVRIPLIS, D. J., "Accurate Multigrid Solution of the Euler Equations on Unstructured 
and Adaptive Meshes", Proceedings of the First National Fluid Dynamics Congress, 
AIAA paper 88-3706, July, 1988. 
HOLMES, D. G., and LAMSON, S. H., "Adaptive Triangular Meshes for Compressible 
Flow Solutions", Proc. of the Int. Con$ on Numerical Grid Generation in Computational 
Fluid Dynamics, Edited by J. Hauser and C. Taylor, Pineridge Press Ltd., July 1986, pp. 

WEATHERILL, N. P., "The Generation of Unstructured Grids Using Dirichlet Tessala- 
tions" Princeton University MAE Report No. 171.5, July 1985 
BAKER, T. J., "Three Dimensional Mesh Generation by Triangulation of Arbitrary Point 
Sets", Proc. of the AIAA 8th Comp. Fluid Dyn. Con&, AIAA paper 87-1124, June, 1987 
SIBSON, R., "Locally Equiangular Triangulations", The Computer Journal, Vol 21, No. 

B O W E R ,  A., "Computing Dirichlet Tessalations", The Computer Journal, Vol. 24, No. 

LAWSON, C. L., "Generation of a Triangular Grid with Application to Contour Plot- 
ting", Cal. Tech. Jet Propulsion Lab. Tech Memorandum 299, 1972 
EISEMAN, P., AND BOCKELIE, M., "Adaptive Grid Solution for Shock-Vortex 
Interaction", Proc. of the 11th Int. Conf. on Num. Meth. in Fluid Dynamics, Eds D. 
Dwoyer, Y. Hussaini, R. Voight, Springer Verlag, June, 1988 

1987, pp. 449-466 

4 13-424 

3, 1978, pp. 243-254 

2, 1981, pp. 162-166 



8 

Figure 1 
Dirichlet Tessalation and Delaunay Triangulation of a Set of Points 

Showing the Circumcircle of One of the Triangles 

Figure 2 
The Two Possible Configurations for the Diagonal in a Convex Quadrilateral 

and the Six Angles Associated with the Most Equiangular 
Configuration (Solid Line Diagonal) 



Figure 3 
Illustration of the Adaptively Generated Stretched Triangulation about 

a NACA 0012 Airfoil Including Details at the Leading and Trailing Edges 
(Number of Points = 2316) 
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Figure 4 
Illustration of the Initial Coarse Mesh for a Two-Element Airfoil Configuration 

Including Details of the Mesh in the Gap Region 
(Number of Points = 5856) 
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Figure 5 
Mach Contours in the Flow-Field Obtained with the Navier-Stokes Solution 

on the Initial Coarse Mesh for the Two-Element Airfoil Configuration 
Mach = 0.5, Incidence = 3', Re = 5000 
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Figure 6 
Vector Velocities in the Gap Region of the Two-Element Airfoil 

Configuration Computed on the Initial Coarse Mesh 
Mach = 0.5, Incidence = 3", Re = 5000 
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Figure 7 
Illustration of the Adaptively Refined Mesh for the Two-Element Airfoil 

Configuration Including Details of the Mesh in the Gap Region 
(Number of Points = 11 377) 
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